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;f SUMMARY
a0,
o The electrical behavior of a semiconductor is critical
'%? to its usefulness in a broad spectrum of applications ranging
. from infrared sensitive detectors and microwave amplifiers to
0
ﬁ\ high-speed/high-denisty integrated circuits. This behavior
‘ﬁ; is controlled by the presence of dopants, impurities, and
. cefects in the semiconductor and by its temperature.
?‘ Dopants, which are intentionally added in relatively large
%g concentrations (1015 to 10180m'3) to create desired
" properties, must be precisely measured in the same samples as
:é the very low concentrations (less than 1012cm'3) of unwanted
éﬁ defects and impurities that generally degrade operating
- characteristics. The only method available for
?; quantitatively measuring the small as well as the large
fﬁ impurity concentrations and determining their identities is
o based wupon the llall effect. The electrical transport
?‘ properties, namely resistivity, Hall mobility, and carrier
S
h' concentration are calculated as functions of temperature by
- combining resistivity and Hall effect measurements. The
5:; i temperature dependent carrier conceantration data is analyzed
::S to obtain the cecncentrations and identities of the
x ¢ impurities. Concentrations of less than ‘j»x10”cm'3 (1 part
Vg in 10'') are measured routinely in silicon. The Hall
gi facility used for these measurements has been maintained and
! employed as a genecal laboratory analysis tool while it has
N
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ﬁ% been simultaneously upgraded in all respects from data
!
collection through theoretical modeling and analysis.
l;.
Y
b
g‘ The precision with which the material parameters can be
..J
r quantitatively extracted from measurements on the sample is
¢
%? dependent upon the Qquality of the data and the accuracy of
bs the data analysis procedure, Temperature dependent Hall
. measurements over a broad range (e.g. 20-400K) are necessary
o
A
. to maximize the information containmed in the data, which can
a‘ make collection of this data very tedious and time-consuming.
’ Automated computer controlled facilities are now routinely
Eﬁ employed which do not dramatically reduce the time for a
ﬁ complete data collection rum (1/2 to 1 day), but they
introduce fewer errors and they do not become bored. This
L ’d
¥
Ir computer control includes automatic setting of the sample
: : temperature with stability to a few millidegrees, adjustment
[}
of the magnetic field, setting the sample voltages, and
.
.i collection of all current and voltage readings. The
N
ﬂ} collected data are used to calculate the carrier
$ 0
concentration as a function of temperature. The identities
Ah
2N and concentrations of electrically active centers (dopants,
4
P impurities, and defects) are then obtained by using another
)
computer program in an interactive mode which fits the
]
ey
] temperature dependent carrier concentration data with a
k)
)
ﬁ“ theoretical model by varying the impurity concentations and
W
e activation &energies as parameters until the difference
l:.
)
"
)
n:" ) iv
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between the data and the model is minimized. This fitting
process starts with trial values of the parameters introduced
into the minimization program by the operator. The ultimate
accuracy, and therefore the wusefulness, of the results
depends upon the precision of the data, the accuracy of the
model, the performance of the fitting program, and detailed
knowldege of several physical quantities that vary with

temperature.

Through a planned and directed thrust over several years
to optimize the sensitivity and quantitative accuracy of the
Hall analysis tecanique, all facets of the process have been
examined for possible shortcomings and improvements have been
incorporated at every stage. This report was written
principally to document how information is extracted from
data by fitting it with a theoretical model. Successful
application of this technique, however, requires a folding
together of experiment and theory, therefore this report is
also a summary of the Hall analysis work already performed at

AFWAL/IiLP and an assessment of where further improvements
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;3 SECTION I

HALL EFFECT ..EASUREMENTS

by
L4
3 Semiconductors occupy the middle ground between the very
d good conductors (metals) and the very poor conductors
% (insulators). This intermediate position, electrically
? speaking, means that they can be made to take on the
X
characteristics of metals or insulators by altering their
»
: environment or preparation. For example, silicon becomes a
~f very good insulator at 1low temperatures, but can become 2
. conductor at room temperature. The most important property
r that can be adjusted during preparation ¢to control the
3 conducting behavior of a semiconducting sample is the
9
) concentration of specific chemical impurities. Because the
g -
ﬁé electrical and optical properties are intimately related, a
:3 semiconductor can also have its optical properties changed.
. Therefore, in order to accurately describe and control the
E' properties of a semiconductor, the concentration and
f identities of impurities must be accurately known, For
electrically active impurities this analysis is most
; accurately performed using the Hall effect (References 1 and
; 2), which 1is superior to other experimental techniques
X
. * because it 1is quantitative as well as very sensitive and
4 accurate,
™.
K
N 1

o
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1. MEASURED AND DERIVED QUANTITIES

The process of using the Hall effect to determine the
impurity concentrations and impurity types in a specific
material begins by measuring the resistivity p and Hall
coefficient R, over a wide temperature range (see Section
I.2). These quantities are related to the carrier

concentrations and the carrier mobilities by (Reference 2)

e = elpu_ 4 nH ) (1

where p is the concentration of positive carriers (holes) in
the valence band, n is the concentration of negative carriers
(electrons) 1in the conduction Dband, and M, are the

conductivity mobilities for holes and electrons respectively,
Y4p and Hy, are the Hall mobilities for holes and electrons,
and e is the charge on the electron. If conduction in the

sample is dominated by one type of carrier, say holes, then

these equations reduce to

PT = epuy (3)
Ry = Myp/(eplp) = r/(ep), ()
2

------
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where r = qu/up is the Hall scattering factor (commonly

called the "r-factor"). The carrier concentration and

mobilities may be computed using

p = r/(eRH) (5)
Yup = Ry/e (6)
My = qu/r (7)

Unfortunately, only R, and P can be measured directly which

means that r must be Kknown in order to calculate the carrier
concentration and conductivity mobility precisely. The value
of the Hall scattering factor, r, can be measured over only
limited ranges in a few cases, and most commonly it must be
calculated or estimated. Its value is near 1 and often this
has been the estimate used, but recent calculations and
measurements (Section V.3) have improved our knowledge of

r(T) dramatically.

If measured over a wide temperature range, the carrier
concentration data contain information on both the identities
of electrically active impurities present in the sample and

the concentrations of those impurities. In this report, the

ARG (LR
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N R TP TR Y U PR T R ENT EW ENEN EW AN ET IV 7T ETTEN T ENT T W wn e -




Wm*vwvm AT AT T Wy
h

Hall experiment for collecting the carrier concentration data
and the computer program for fitting these data will Dbe
described. Use of the program to determine the
concentrations and chemical species of the impurities present
in a sample will be explained. Recent theoretical advances
in the calculation of the Hall scattering factor leading to
improved determination of the carrier concentration will be
discussed. The mobility data can be wused to give an
indication of the presence of electrically inactive
impurities present in the sample and provide information on
the crystalline quality of the sample. These data are
quantitatively less useful at present because of the greater
complication of the theory and the correspondingly greater
difficulty in applying it to a concrete situation, Recent
theoretical advances have renewed hope that these

measurements, too, can be used to characterize samples,

2. THE HALL EXPERINLENT

fhe Hall experiment involves measuring the voltage at

several locations on a sample that is held at a precisely
controlled temperature when that sample is subjected to a
constant current in the presence and absence of a magnetic
field. The sample must be mounted in thermal contact with a
fixture which in turn is mounted between the pole pieces of a
magnet., The temperature may be varied over the range

4,2 - 400K and the magnetic field must be variable up to at

‘I"
n.’:‘)./.'.\m o .: 5 ot
T, M)L¥L‘(Lf¢(m{&‘{\.\p.' EAe < ) {J_.. Ly ig:rn 1‘
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Figure 1. Schematic Hall effect measurement, The letter 1
denotes the current induced in the sample by an
external power supply, H is the magnetic field

applied perpendicular to I, V. jis the Hall voltage
measured perpendicular to I ind H, and d is the

(positive) charge deflected by the Lorentz force
which is also perpendicular to I and H. The
sample thickness and width are t and w
respectively.

least several tenths of a Tesla.

A generalized Hall experiment i3 {llustrated in Figure

1. A current, I, is passed through the sample and the Hall

voltage, VH. is measured. Initially, the magnetic field is

off, H = 0, in which case V., . o, unen the magnetic field is

applied, the moving charges are deflected by the Lorentz
force in a direction mutually perpendicular to I and H until
they experience n» net force and steady-state is reached.

Deflection of the charges creates a charge concentration
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:%J gradient across the sample and therefore an electrostatic
AN
_ field. At steady-state, this electrostatic field is called
5%
el the Hall field and its force on the charges balances the
,\'_’.'
L)
,:i' Lorentz force. 7The Hall voltage, VH' divided by the distance
h
w between the contacts, w, gives the value of the Hall field.
4
¢ .
%\j The Hall coefficient R, js defined as the proportionality
N
f_*) constant between the current and Hall voltage and is
therefore expressed in terms of directly measured quantities
0
o
b
O R =
ey H = (Vyu/I)(t/H) (8)
.‘ - -
Eﬁi including the sample thickness, t, Measurement of the
ai resistivity, p, is illustrated in Figure 2. The resistivity
. is the resistance of the material after correction for the
.‘_.‘:.
:;5 dimensions of the sample and can therefore be expressed in
r,.".':
%i: directly measurable quantities,
sy
A
4£¢- p = (V/I)(wt/L), (9)
)
‘J.'H‘ \

where V is the voltage measured between contacts a distance

s
.': apart wher a current, 1, is passed through the sample with
',2
's thickness t and width w,
.‘v‘
% :
:gﬂ At low temperatures, the carrier concentration in
L)
2; semiconducting samples decreases due to "freeze-out" which
',1£
« generally results in very high sample resistances and
> >,
s
004
+%
>
. 6
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Figure 2. 3chematic resistivity measurement. The letter I

denotes the current induced in the sample by an
external power supply and V is the voltage
measured between two contacts spaced a distance
apart. The sample thickness and width are t and
W, respectively.

therefore small electrical currents. To avoid distorting the
voltages measured at the sample contacts (due principally to
contact resistance), the current drain by the meters must be
mucnh smaller than the current flow through the sample. This
requires meters with very high input impedances that are at
least one hundred times greater than the sample resistance.
To avoid the noise problem introduced by unnecessarily long
RC (resistance-capacitance) time constants, the leads between
the sample and meters must have a cable capacitance that is

operationally equal to =zero. This requirement 1is satisfied

(Ref'erence 3) by connecting electrometers to the sample
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heater coil

beryllium oxide wafer
sample

—_—

magnetic field

copper block

) )

radiation shield !
heater coil

cold helium gas

Figure 3. Diagram of the Hall sample holder showing the
configuration used for fine temperature control.

voltage probes with triaxial cables and using the unity gain
electrometer outputs to drive the inner guard shields to the
same potential as the probes. This permits taking reliable
voltage readings on samples for which the resistance exceeds
10'20has. Sample currents at these resistances are on the

order of 10'1’amps and sensitive electrometers must be used

to measure these gquantities as well.

For temperature uniformity and control, the sample is
held in thermal contact with a beryllium oxide wafer mounted
on a copper block as shown in Figure 3. The copper block 1is
in a gently flowing stream of cold helium gas, which acts as

a low temperature heat sink. The whole sample region 1is
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covered with a radiation shield and is not in direct contact
with the flowing helium, A heater built into the copper can
hold the temperature stable to within a few millidegrees.
The heater is operated by a closed loop proporticnal
controller which uses either a platinum or carbon-glass
resistance thermometer for regulation, but the temperature is
actually measured by an independent silicon diode thermometer
while the magnetic field is off. The sample holder 1is part
of a liquid helium dewar that is mounted so that the magnetic
field 1is perpendicular to both the sample face and the
current flow through the sample. For a given sample, one of
two general sample shapes is used: either the Hall bar or

the van der Pauw.

a. Hall Bar |
The Hall bar shape most commonly used is that shown
in Figure 4, Samples are cut from a wafer wusing an
ultrasonic "cookie cutter", Variations on this shape are
used for special cases, but they are all physically
equivalent. To collect the resistivity data, a current I is
passed through the sample using contacts C1 and Cp, and a

voltage V 1is measured between contacts R1 and R,. From

bEquation 9 above, the resistivity is given by

p = (V/I)(wtre), (9)
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Figure 4, Drawing of a Hall bar showing the connections used
to measure the resistivity (top) and Hall
coefficient (bottom).

To measure the Hall coefficient, a magnetic field, H,
(perpendicular to the page in Figure 4) is applied and a Hall

voltage VH is measured across the sample between contact H
and the contact R2. From Equation 8 above, the Hall

coefficient is given by

Ry = (V7D (t/H). (8)

rrors due to thermoelectric and thermomagnetic effects as

well as to small inhomogeneities and geometrical
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Vs

Figure 5. Illustration of the Six Possible Configurations of
Electrical Connections Used to Measure the
Resitivity (1,2,3,4) and Hall Coefficient (5,6) of
a van der Pauw Sample,

irregularities are minimized by <collecting data for all

combinations of current and magnetic field reversals and then

averaging suitably,.

b. Van der Pauw
Like the Hall bar, the general van der Pauw
(References 4 and 5) shape must be homogeneous and have
uniform thickness, but it also must contain no holes and have
four point-size conrtacts on the periphery, Data collection

and analysis are much simplified if a symmetrical shape is

11
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used and the contact size restrictions are greatly relaxed if
some form of the "clover 1leaf" is chosen for the sample
shape, Figure 5. The slots in the clover leaf effectively
restrict the sample's measured area to the central portion --
a small area about 2mm square -- and electrically place the
contacts far from this active region. The advantage 1is
twofold: first, the contacts can be made much larger without
introducing error (Reference 6) and second, a small sample

area permits sampling of wafers with higher spatial

resolution,

Data collection using a van der Pauw sample differs from
the Hall bar primarily in the fact that each contact plays
the role of both voltage probe and current connection during
the necessary switching process that 1is shown schematically
in Figure 5. ‘leasurements are required at only three of the
six configurations, say 1, 2, and 5 or 3, 4, and 6. For the

1, 2, 5 set, one puts the current I through the sample and

measures the voltage V, jp position 1, V, in position 2 and

then V5 with the magnetic field on in position 5. To reduce
these measurements to resistivity and Hall constant, one must

assume that V. 5 zero when H is zero. This is rarely the

case, and so, in analogy with the Hall bar case above, V1'

V,, and Vg are remeasured and suitably averaged with the

values obtained when the current and/or the magnetic field is

reversed. Therefore, a complete set of data at each

12
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temperature consists of V1' Vo, Vg, I and H. For more

complete averaging, equivalent data can be taken in the other

positions and would include V3, Vy, Vg, I and H.

The resistivity may be calculated (References 4 and 5)

using

P o= mL(R, . Ry)F(Ry/Rp)/(2102), (10)

where t is the thickness of the sample and R1 and R, are

given by

Vy/1

-
"

(11)
V2/I.

n
"

The function f(R,/R,) is a dimensionless quantity dependent

only upon the ratio of the resistances measured for

configurations 1 and 2 and egquals one when R1 equals

This is the case for an electrically isotropic geometrically

Rs.

symmetric sample. The ratio R1/R2 is monitored as a function

of temperature and it should remain constant. If it does

not, material inhomogeneity is implied.

The Hall constant is found'using

Ry = (avg/I)(t/B), (12)

13
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where

AVg = vg(B) - Vg(B=0). (13)
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0 SECTION II
' THE CHARGE BALANCE EQUATION
£
B
f: The carrier concentration in a semiconducting sample is
K.
determined (References 2 and 7) by assuming charge neutrality
4
4 in the sample, a condition expressable in terms of the charge
. balance equation:
"
g + -
!-: p + ZNDE = N + {NAi (1“)
)
b
Here, p denotes the concentration of holes (positive
;' carriers) in the valence band of the sample, n the
N concentration of <electrons {(negative —carriers) in the
+
¥1
. positively charged (ionized) donors (typically group V
' -
" elements in silicon) in the sample, and NAi the concentration
. of negatively charged (ionized) acceptors (typically group
K, Il inm s8ilicon) in the sample. The sums are over the
different species of donors and acceptors.
N
ﬂ For a silicon sample more heavily doped with acceptors
L]
) than donors, the number of free electrons in the sample is
§ negligible at and below room temperature and all of the
> donors in the sample end up being positively charged because
:: their outer electrons have moved away to acceptor sites,
‘ compensating them, The sum over donors may be replaced by a
.
v,
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single number N yhich represents the total contribution of

all of ¢the donors in Equation 14, Then, the electrical
conductivity is dominated by the holes and the sample is said
to be p-type. For this case, the charge balance equation

takes the simpler form:

P+ Ny - §NA1 (15)

If Fermi statistics are applied to the acceptors, and
Boltzmann statistics are applied to the concentration of
holes in the valence band (this approximation is discussed in

Section V.1.,b), Equation 15 takes the form:

P+ My . ENAi/(1 + p/o;) (16)
where
65 = My/( Lgjjexp(Epj /K1) (7))
J

Here, the sum over j includes the ground state and the

excited states of the impurity. The degeneracy of the state

is given by €ij and the (positive) binding energy of the
state is given by EAij and is measured from the valence band

edge toward the conduction band. The density of states in

the valence band is denoted by N

16
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The carrier concentration p(T) is measured as detailed

above, and the parameters N (T), gij for all of the states,

and EAij for the excited states are found from theoretical

analysis and other experiments. By fitting the solution of
Equation 16 to the measured p(T) data, the value of ND- and
the values of N, . and Epjo (ground state ionization energy,

denoted below by E,.) may be determined. That is, the
concentration of donors, the concentration of each acceptor,
and the ionization energy of each acceptor are found. The
ionization energy of an acceptor serves to identify it. It

should be noted that unless the sample is heavily doped or

the ionization energy E,  js very small, the excited states

contribute very little to the sum in Equation 17 and they may

therefore be safely neglected. Then, the temperature

dependent function ¢. takes the form that is applicable in

most cases:

(bi = Nvexp(-EAi/kT)/gio. (18)

The degeneracy of the ground state, giO can be treated as an 1
unknown parameter during the fitting process so that it may
. be determined from the p(T) data. When this test gives

non-integral values for g,, it may indicate that the excited

states are contributing significantly in Equation 17,

17
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Figure 6. Concentration of holes versus 1000/T for a sample with one undercom-
pensated acceptor species. The curve fitted to the data points
(+ signs) gives a reduced chisquare of 1.3,
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1. SINGLE ACCEPIOR SOLUTION

The graph in Figure 6 shows the typical form of the hole
concentration data (Reference 8) for a sample with only one
type of acceptor. Note the three distinct portions of the
curve. At the highest temperatures on the left, the hole
concentration is a constant independent of temperature., This
"exhaustion region" develops when the temperature 1is high
enough to cause thermal ionization of all acceptors in the

sample, then, hA in Equation 15 1is just NA and the hole

concentration is independent of temperature:

P = Ny - Np. (19)

At the lowest temperatures on the right, in the "freeze out
region," the carriers become bound to the acceptors and the

hole concentration is given by:

P = Uy L up)®/Np « exp(=En/kT). (20)

This produces the long linear section of the curve at low
temperatures with a slope related directly to the ionization
energy of the acceptor. Between these two temperature
extremes, there may be a linear section of the curve with a
slope of half the low temperature slope where the hole

concentration is

19
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P = /N, ® «exp(-E,/2kT) (21)

and the extent of this intermediate region depends upon the

ratio NA/“D~ The haif-slope region becomes very long for

large values of the ratio N,/N, and the break between this

region and the low temperature region occurs for a carrier
concentration near the value ND-

Equations 19, 20, and 21 may be used as a guide when
examining graphs of carrier concentration data. The
logarithm of the carrier concentration is plotted versus
1000/T to straighten the graph in the intermediate and low
temperature regions whe.e the data are exponential. The
presence of a clearly visible intermediate temperature region
in Figure 6 indicates that the concentration of donors is at
least an order of magnitude less than the concentration of
acceptors in this sample and the position of the break to the
low temperature slope gives an estimate for ND' The height
of the curve in the exhaustion region gives an approximate
value of 5.0x1016/cm3 for the concentration of acceptors, and
the slope of the 1low temperature data give an ionization
energy of 0.076 eV which 1is the approximate value for
gallium, This quick sScan of the data gives important
information, namely that gallium is most probably the

dominant impurity at a concentration of about 3.0x1016/cm3.

20
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and that the net concentration of donors is roughly
3x10'3/cm3. A detailed computer analysis of this sample will

be presented in Section III,

When more than one type of acceptor impurity 1is present
in the sample, the curves take the same general form, and
while the slopes of the sections may be either proportional
to the ionization energy of the acceptor or half that value,
the interpretation of the curve is much more difficult. In
this case, a nonlinear fitting program is needed to
disentangle the information from the various portions of the
curve, Adding to the complication is the fact that ND and
the N,. include only impurities which contribute to the
measured p(T). "Invisible" impurities may be present which
form defects that are not electrically active as well as
three categories of donors and acceptors that are not
detectable: (1) deep acceptors which have an ionization
energy E, ., that is greater than the highest experimental kT
and are therefore not ionized, (2) shallow acceptors with
ionization energies 1less than the energy of the 1lowest
partially compensated acceptor that are overcompensated by a
factor of 5 or more, and (3) the portion of Np required to

exactly compensate the invisible shallow acceptors in

category (2). The measured portion of Np is referred to as
the net donor concentration, In other words, when a complete

Hall analysis is performed, it is possible that the sample

21
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’ may contain some acceptor centers, both shallow and deep, and
N some donor centers in addition to those detected. This 1is
4
i

~
?: the case for silicon samples intentionally doped with indium

5

‘5 which always contains some boron. If any of the boron is
electrically active (i.e., undercompensated) extra donors may

..,;

I
Sh be introduced intentionally to overcompensate the boron and
1}

§

th

:u therefore make it electrically inactive in order to reduce
I'A

- the low temperature carrier concentration.

Sols

! li
‘ M
N, 2. MULTIPLE ACCEPTOR SOLUTION
a

Data from a sample with more than one type of
- .f‘
-{ electrically active acceptor (Reference 9) are shown in
~ Figure 7. The more complicated shape of this curve indicates
s
) that there are multiple acceptors in the sample, A simple

:Z fit to these data indicates the presence of two acceptors
'ﬁ whose energies are determined by the straight line portions |
o of the data. The steepest portion of the curve at high
. |

ﬁ temperature has a slope indicative of the presence of indium

[l

;ﬁ in the sample, and the 1less steeply sloped portion at 1low
- temperature irdicates the presence of aluminum. The detailed

o
-t shape of the curve, however, indicates the presence of a
Lo

5 third acceptor with an ionization energy between that of

-

. indium and aluminumn. This acceptor is known as indium-X and

&

~

-{ including it in the analysis improves the fit to the data.

M
4
‘;J

o
- It is a very general property of carrier concentration

>
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Figure 7. Concentratjon of holes versus 1000/T for a sample with several
undercompensated acceptor species. The two-acceptor fit shown has
& a reduced chisquare of 3.4 whereas a three-acceptor fit has a

. reduced chisquare of 0.9.
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Figure 8. Data of Figure 6 after multiplication by a factor of 10,
The fitted curve shown has a reduced chisquare of 128,72,
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data that the detailed shape of the curve contains
information beyond that available inm just the slopes of the
straight line sections and the absolute height of the curve.
This is clearly seen by comparing the one acceptor fit to the
data inm Figure 6 with a one acceptor fit to the same data
multiplied by a factor of 10 as shown in Figure 8. The
higher values of the data reguire higher values of the
impurity concentrations, but even so, these higher values
cannot reproduce the detailed shape of the curve: the shape
retains the information that the true impurity concentrations
are an order of magnitude 1lower., Therefore, even 1in the
simple one level situation, the maximum amount of information
can only be extracted from carrier concentration data by
performing a computer fit to them. However, if a particular
data set contains only a single slope with no bends or
structure, then the data can be shifted in magnitude with no
adverse effect upon the fit and the only information

contained in the data is one energy level value,

For the case of two acceptor species, the exhaustion

region again develops at high temperatures where all of the

acceptors of both types are ionized. Then, Equation 15 has

the solution

A1 + “A2 - ND. (2(_

25
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For temperatures immediately below the exhaustion region, the

solution of the charge balance equation takes the form

p = l“’A~|(I)1 , (23)

where the acceptor listed is the one with the deeper ground

state (greatest absolute value of the ionization energy), and
the slope in this region is EA‘I/Z' If Np is greater than

NAZ' the shallower acceptor is overcompensated, and the

carrier concentration in the low temperature regime is

= (Nay + Ngp = D) 91/ (Np = Hp2) (2®)

giving a slope of EA1. This looks exactly 1like the one
accceptor solution with an effective number of donors given
by ND - Naoe This important result, namely that overcompen-
sated shallow acceptors are not "seen" 1in the data was
remarked upon above, Note that the concentration of donors
found inm the analysis is actually the concentration of donors

mirus the concentration of the overcompensated shallow

acceptors,

[f the shallowWer acceptor is exactly compensated, i.e.
ﬁ% ), = Na,, the solution for high and intermediate temperatures
stays the same as above, but the solution at low temperature

takes the form
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Hole concentration versus 1000/T for a sample doped with two
acceptor species. For the fit shown a reduced chisquare of 1.8

was obtained assuming r = 1, a net donor concentratjon of

1 3

4.4x1012/cm3 and a concentration of 5.7 x 10 a/cm for the shallow

acceptor. 27
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a concentration of 3.9 x 10 " /em™ for the shallow acceptor.
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P = Ny oo, /np (25)

and the low temperature slope 1is (EA1 + Epn)/2. If the

shallower acceptor is undercompensated, 1i.e, ND less than

NAZ- the solution at high and intermediate temperatures is
again the same as above, but the solution at low temperatures

is

p = (N“2 - ND)<D2/ND (26)

giving a low temperature slope of EAZ’

3. ALTASING

If the value (E,, Ep2)/2 is near the ionization energy
of another impurity, say EA3' two different fits to the data
will be possible, one with the impurities #1 and #3 showing
up in the fit, and one with impurities #1 and #2 showing up,
but where the concentration of donors is almost exactly equal
to the <concentration of acceptor impurity #2. This
po3:. ibility of the aliasing of one impurity by another is
shown in Figures 9 and 10, Both show the same data
(Reference 10), but the first shows a fit with a shallow

acceptor that 1is undercompensated, while the second shows a

fit with a shallow acceptor that is almost exactly

compensated. Note that in both of these cases, the presence

imremie T TS




K and character of the deeper acceptor is unambiguous. The
only question to be determined is whether the shallower

dﬁ acceptor is closely compensated or not. Larrabee (Reference
XN 11) performed a series of experiments on indium doped silicon
to determine whether the indium-X acceptor was the result of
close compensation of a shallow level. By varying the donor
J. concentration, he was able to show that close compensation of
a shallow level could not explain the data. It is a curious

b fact that several acceptors have ionization energies near the
R~ average of the binding energies of two other acceptors
(Reference 12). It is especially important to perform a

S careful analysis such as that done by Larrabee for these
P of

- levels (References 13 and 14).
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SECTION III

DZTERMINATION OF FIT QUALITY

The quality of a computer fit to experimental data can
be judged in a number of ways. The most important of these
is a quantitative statistical measure called the reduced
chisquare which depends on the mismatch between the values of
the fitting function and the data points. Though it is a
quantitative indicator, it gives only aggregate information
about the fit as a whole and does not provide detailed
information about the relationship between the shape of the
curve and the trend of the data. Detailed information of
this type may be obtained by examining a graph containing the
data points and the curve produced by the fitting function to
see whether the curve faithfully reproduces the bends and
points of inflection of the data. It may be necessary as
well to examine numerical values of the data and fit to look
for systematic or correlated errors which are too small to
see on a graph. When the fit seems to be a good one
according to these methods, it may still be producing
physically unreasonable values of the fitted parameters, a
sign that the fit is a poor one. Even if the values of the
parameters are reasonable, one or more of the parameters may
be determined only approximately by the fit. In this case,
the data is not constraining the parameter(s) strongly and

the fit is said to be "mushy", meaning that the value of
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chisquare 1is only weakly dependent on the value of the
parameter(s) 1in question, In this section, each of these
measures will be examined in turn to show the information
they give concerning the quality of a fit and the action

which may be taken to improve the fit, if needed.

1. REDUCED CHISTUARE

The fitting of a theoretical formula with adjustable
parameters to a set of data is done by varying the parameters
so as to mimimize a Qquantity that measures the distance of
the fitting curve from the data points. The appropriate

measure is called chisquare and is defined by (Reference 15)

N
X2 = 1 1y, - £(xg)12/0,2 (27)

i=1
where N is the number of data points, Y; is the ith data
value with standard deviation O;,, and f(x;) is the value of
the fitting function for the i'M data value. If a fitting
function could be found that went through all of the data

points exactly, the value of chisquare would be zero.

Ordinmarily however, the data are randomly displaced
about the curve due to the finite precision of the experiment
and the minimum value of chisquare is not zero. A fit using

a function f(xi) is judged to be a poor one if it produces a

"large" minimum chisquare and is judged to be good if it
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;3 produces a "small" minimum chisquare, If there are n free
. parameters in the fitting function, we might expect that the
v
”ﬁ fitting function could go through n of the data points
LN
-,
Wl exactly and miss the rest by about one standard deviation,
. As an estimate, then, the minimum value of chisquare would be
-.-
:xﬂ .
o5 approximately
fﬁ
k)
19
N
. x2 vu - (28)
‘\.'.
N
‘e
ﬁ: Because this minimum value depends only on the number of data
K
. points and the number of free parameters, the significant
‘;E quantity is not chisquare, but chisquare divided by N - n,
2’
.
2 2
i Xv = X€/(N - n) (29)
A
:Q called the reduced chisquare. Its minimum value should be
(]
- about one, and therefore, a poor fit is one with a reduced
jn
A chisquare much larger than one,
-
' vy
4 »
b In the fits shown in this report, the standard
Fd
. . .
.mj deviation, 0, , is assumed to be 3% of the data value:
D_} .
F_".
:i; 01 = 0.03yi. (30)
k) .
? 'l
-
"W If the standard deviation 1is 1larger than that given by
e
o tquation 30, or if the fitting function is inappropriate for
o
~':
: 33
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the data, the smallest value of the reduced chisquare will be
greater than one. On the other hand, if Equation 30
overestimates the deviation of the data and if the theory
describes the data well, the reduced chisquare will be less
than one, When the minimum reduced chisquare is too large
for a givenr fit, parameters may be added to the fitting
function to improve the fit. For the hole concentration data
discussed here, this may be accomplished by adding more
acceptor levels to the fitting formula, The data in
Figure 7, for example, are better fit assuming that there are

three rather than two acceptor species doping the sample.

One might think that adding extra parameters in the
fitting functior could always improve the fit and decrease
the minimum value of the reduced chisquare. While the
minimum value of chisquare itself will decrease as a result
of addirng extra parameters to the fitting function, the
minimum value of the reduced chisquare will not get smaller
because the value of the denominator in Equation 29 also
decreases as n is increased. As parameters are added during
a fitting session, the minimum reduced chisquare will first
decrease and then increase, having a lowest value as a
function of n. For this lowest value, the maximum
information is extracted from the data. Practically
speaking, parameters are added so long as the results are

physically reasonable,.




TABLE 1

" 3l N

RESULIS +*OR THE DATA INMN FIGURES 4 AND 6

' Net Donor Acceptor Acceptor Reduced
Concentration Concentration Energy Chisquare

a (em=3) (em=3) (eV)
v Fig. 6 7.17x1013 3.17x1016 0.071 1.3

Fig. 8 8.46x1014 7.16x1017 0.066 128.2

o Compare the values in Table 1 for the reduced chisquare
0 for Figures 6 and 8. The fact that the value for Figure 6 is
near 1.0 is an encouraging indication that this is a good fit
to good data, whereas the large value for the same type of
fit to the 10X data in Figure 8 leads to a rejection of this

fit without giving information as to the cause of the

vt

problem.

P Y

-
.

The use of the reduced chisquare to measure the quality

of two different fits to the same data is 1illustrated in

N Figures 11 and 12 with (respectively) a two acceptor and a
three acceptor fit to the data (Reference 16). The unusually

- low value of the reduced chisquare for the three acceptor
. ) fit, 0.15, is an indication of the excellence of the data.

. The fact that the reduced chisquare for the three acceptor

fit is less than the reduced chisquare for the two acceptor

fit, 3.65, lends statistical support to the hypothesis that

e w et s

there are actually three different acceptors in the sample.

.
b

This reductior in chisquare does not always happen, for as
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O Figure 11. Hole concentration versus 1000/T for a sample doped with three

| acceptor species, The two acceptor fit shown has a reduced
W chisquare of 3.65.
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discussed above, increasing the number of parameters by
increasing the number of acceptors in the fitting process may

not lead to a smaller reduced chisquare.

2. GRAPHICAL COMPARISON AND ERROR AHWALYSIS

The vu ue of the reduced chisquare does not tell the
whole story about the Qquality of a fit, If a perfect theory
is used to fit a set of data that has only random error in
it, the minimum value of the reduced chisquare would reflect
only the residual random error in the data. That i3, the
data points would be displaced above and below the curve
randomly, In a realistic situation, however, there will be
systematic error in the data and perhaps the theory. Then
the minimum value of the reduced chisquare has two
components: a part due to the random error in the data which
shows up as described above, and a part due to the systematic
error which shows up as a correlated displacement of the data

points above or below the curve,

For example, the fit shown in Figure 8 is known to be
poor because of the high minimum value of the reduced
chisquare. The poorness of the fit may be confirmed by
comparing the fitted curve to the data points over a range of
temperatures. The difference between the data and the fit 1is
systematically either high or low over a temperature range,

the largest percent difference being about 30%, and this is
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evidence that the poor fit is caused by systematic error. In
this particular case, the poor fit was caused artifically by
multiplying the accurate data of Figure 6 by a factor of 10
to produce the data in Figure 8. In other words, a
correlation of the error from point to point is an indication
of systematic error, the amount of systematic error being far
larger than the irreducable systematic percent difference

between the data and the best fit.

Systematic error in an experiment can come from a wide
variety of sources, Experience leads to the identification
of the temperature, magnetic field strength and sample
thickness as the greatest experimental sources of systematic
error in Hall &effect experiments, If the theory is
approximate, it will contain systematic errors and the fitted
values will differ from the experimental values for this
reason, For example, as noted above, the usual estimate for
the value of the Hall scattering factor r is to take r = 1.
It is known that r can differ from this value by as much as
30%. In Table 2, the fitted values are compared to the
experimental values of the carrier concentration for the data
in Figure 6. Note that even for these data there are small
but systematic deviations of the fitted values from the
experimental values over wide temperature ranges. This leads
to the conclusion that either the theory or experiment (or

both) has residual systematic error in it, It can be very
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. COMPARTSON OF DATA AND FIT FOR FIGURE 6
LA
:_f.z:: Carrier Carrier
W Concentration Concentration Percent
:‘_-: T Data Curve Difference
) (K) (em=3) (em=3)
- 30 5.10x107 5.36x107 2.5
R 32 3.26x103 3.46x108 3.0
AT
o~ 36 7.05x109 7.20x10°9 1.0
40 8.81x1010 8.59x1010 -1.3
o 45 1.07x1012 1.01x10'2 -2.9
N
it 55 2.94x1013 2.89x1013 -0.8
-i.
N 65 1.69x10 18 1.66x1014 -0.9
80 7.76x10"H 7.53x1014 -1.5
SHEN 100 2.75x1015 2.62x1015 ~2.0
.'-n.
R L 130 8.19x1015 8.00x1015 -1.2
-,
o 160 1.48x1016 1.50x1015 0.7
LA =
200 2.21x1016 2.27x1016 1.3
o 250 2.66x1016 2.78x1016 2.2
oo 350 2.92x1016 3.07x1016 2.5
h ’.h
e Mo
La%
-‘::‘
-‘:;',- beneficial, therefore, to expend considerable effort
.
\_';' improving the experiment and the theory so as to decrease the
Ly
—— amount of systematic error. In Section V, efforts to improve
::ij: the state of the theory will be discussed.
- The differerce between the fits in Figures 11 and 12 can
.
, be seen in the region near a carrier concentration of
K- "~
SN .
').:-} 10 8em=3, The two level fit in Figure is systematically
o lower than the data in that region, whereas the three level
Ml
A
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Y
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f fit in Figure 12 follows the data more closely. Clearly, the
()

fit shown ir Figure 12 is a better one physically (following
} the shape of the data more closely) as well as statistically
"
s
S (giving a significantly lower value of the reduced
» chisquare). Note that this conclusion depends strongly on
: the accuracy and the density of data points in that region,
v
N
I
' N

3. PARAUETER VALUELS
J.
» The ultimate measure of the quality of any fit 1is the
o
-
o value of the parameters produced by the fit. No matter how
8

low the chisquare or how well the curve follows the twists
i
.
.\ and turns of the data, if the values of the fitting
'
“~
~ parameters are physically wunreasonable, the fit must be
. rejected. One cause of poor results is systematic error.
/i
») When systematic error is present in the data or the theory,
a
; the fitting program distorts the values of the parameters so
. as to achieve the closest possible alignment between the
_’h
;i curve representing the charge balance equation and the
:ﬁ erroneous data. for this reason, the curve in Figure 8 is
. not a factor of 10 below the data (which is too high by a
ot
-y
N factor of 10), and the penalty for achieving even the poor
§ fit shown is the multiplication of the acceptor concentration
3 by a factor greater than 20 and a reduction of the ionization
;: energy by 7% (See iable 1),
[
LY
o
. A poor value for a parameter may also be produced in a
~'i
*.
) »
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"mushy" fit where the chisquare value 1s 1nsensitive to the
value of the parameter, This may be seen in data such as
that in Figure 7 where a third impurity was reguired for a
good fit, but the ionization energy of the impurity was found
to have a poor value because the fit to the data is not very
sensitive to that iorization energy. The solution here is to
perform the fit with the ionization energy fixed at a value
determined in another way, e.g. from optical measurements.
Fixing the wvalue of a poorly determined parameter is a
convenient way of improving "mushy" fits even whenp the fitted
values are not so far off the mark. Alternatively, there may
just not be enough noise free data to determine a certain
parameter well, In this case the scatter must be reduced or
more data is required, usually over a wider temperature range
or more closely spaced in temperature, in order to delineate
bends and inflections better, thereby increasing the

sensitivity of the experiment.

Occasionally, a fit may produce an unlikely value of a
parameter because the fitting routine has found an alternate
minimum of <chisquare in the parameter space. In the
situation shown in Figures 9 and 10, the fitting function
produced good fits with two quite different sets of
parameters and the fitting program found two 1independent
local minima of chisquare in the parameter space, In order

to 1insure that the "true" minimum has been found, it 1is
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:
ﬁ necessary to search for alterpative minima in the parameter
; Space and then examine the quality of the fit that each
; produces., Ofter, one fit is preferred because it gives a
X lower chisquare, because it follows the data better, or
; because it produces more physically realistic values of the
} parameters. For the data in Figures 9 and 10, the preferred
¥
g fit is the one with a sliéhtly larger value of the reduced
chisquare. Both fits follow the data equally well, but the
E preferred fit has parameter values that are more reasonable
E physically. Subsidiary minima may be eliminated by fixing
‘ the value of one or more parameters when their values are
3 known or by performing a series of experiments (Reference
1),
E Theoretical systematic error can cause intriguing
:E correlations of parameter values, For example, if the Hall
!
5 Scattering factor is takenm to be 1 when fitting Si:In data,
:S the ionization energy of the indium acceptor will depend on
E; the amount of compensation of the indium. That is, if the
:' indium acceptor is uncompensated, the indium 1{ionization
% energy will be determined from the intermediate temperature
fs ) range where the slope of the carrier concentration curve is
- related to one-half of the jonization energy, and a value in
E the range 0,165 - 0.170 eV is found. If, on the other hand,
E the indium acceptor 1is partially compensated sSo that the

graph shows the low temperature slope related to the full ‘
|
|
Ly 43 ‘
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ionization energy, the value found is in the range 0.153 - l
0.159 eV (References 11 and 17). Use of the empirical Hall
scattering factor discussed in Section V.3.b as a correction
for indium doped samnples improves this state of affairs by
reducing the indium 1ionization energy in samples with 1low
compensation. As a conseguence, the concentration of indium
found by the fit is also reduced in agreement with the
concentration found by other techniques (References 17 and
18). Neglecting the Hall scattering factor can cause an
error in the indium éoncentration as large as 100% and an
error in the in.'ium ionization energy of about 7%. The only
unambiguous indication of this error in the Hall data itself

is the unusually high value of the indium ionization energy

in some r = 1 fits, Without correcting for the effect of the
Hall scattering factor or having other data, it can be
difficult to tell Jjust how far the computer-produced

parameter values are from the true parameter values.

If accurate values are known, the values of the
parameters produced in a computer fit can be a very sensitive
test of the quality of ¢the data and/or the theory. For

example, in Figure 8 above, a factor of 10 error in the data

translated into a maximum of a 30% difference between the
e curve and the data for the best fit, whereas the impurity
ﬁ& concentation was in error by a factor of 20 and the

ionization energy by 7%. Also in Figure 9, a 30% error in
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the theory due to the Hall scattering factor was reduced to
about a 5% difference between the fit and the data points for
an error of about 7% in the energy and 100% in the indium
concentration, The error in the indium concentration for
this sample could be reduced if data in the exhaustion (high
temperature) region could be added. When it is available,
data in all three temperature regions overdetermine the
parameters in the fit via Equations 19, 20 and 21.
Systematic error is most often revealed more in terms of a
larger value of the reduced chisquare and less in terms of

parameter error.
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SECTION 1V

THE FITTING ROUTINLS

The computer program used to fit the carrier
concentration data makes use of the computer subprograms
(CURFIT and MATINV) in the book by Bevington (Reference 15).
It finds the minimum value of chisquare by searching for the
point in the parameter space where the gradient of chisquare

is zero.

The program may be understood most easily if the
discussion 1is confined to the <case in which only two
parameters, a, and a,, are varied in the fit. The N data

points (xi'yi) are fit using the fitting function f(a,,a5,x;)

and Equation 27 for chisquare,

N

2 -
X = 2 [Yi - f(81, an, Xi)]e/cie (31

i=z1
is minimized to find the best value of the parameters a, and

as. The optimum value of these parameters occurs at the

point in the parameter space where chisquare is a minimum,
We denote this point by (81(min).32(m1n)). At the minimum'
Ik the derivative of chisquare with respect to the parameters is

&N zero,

1 46
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N X =0 (32) |
a) al(min)
R (3 2
:j %L = 0,
> #21a, (min)
- 2
'\d
o
" whereas away from the minimum the gradient will not be zero,
.-‘.
2% but will point uphill toward larger values of chisquare,
o,
&
Fl
o Sufficiently close to the minimum, the value of the
;? derivative of chisquare may be approximated by the first two
X
:?! terms in a Taylor's series exapansion,
R 2 2 2 2
“ 2 ?
b 9 A 3 )
. 0 =§§" = 5%‘ D) (aj(min) - ajlg—%;—. (33)
k ak(min) k a, j
.' J=1
- where the first and second derivatives of chisquare have the '
g
f_» form
N
. . o 1 3f
e 5o F "By = -2 ] =5 lyg-flaj,ap,x4) )5 (34)
LS k o k
,p iz1 1
28
£l
b
2.2 N 2
. 3 X _Za_zzl{afaf_[ _ 9 f (35)
. = = y, - f(a ,a,,x,)) } 3
. . a
i}t aaka ; kj i=l012 aak aaj i 1°°2°71 aakaaj
iz; Note that the vector B points downhill toward smaller values
e, : of chisquare in the parameter space and a is related to the
g
:\j curvature matrix. Substituting these definitions into
A3
D)
ﬂx Equation 33 brings it to the form
",
l..
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i)
Eha oL
) 0 2B; + I laj(min) - ajl2e; (36)
. j=1
.q\

< which may be solved for the optimum value of the parameters
..‘

WY
) 2

n, -1

¥ a,(min) ¥ ay + ] (a7);;B;. (37)
b .

) 1:1

J.W

o
" Because this equation is approximate, it does not in fact
- produce the optimum value of the parameters given any
LA |
~

‘ﬂ starting value, but produces a value closer to the optimum
o
9? than the starting value. The starting point (a1,32) in the
y parameter space is guessed, and the poorer that guess the
L
‘.-‘,,
f;i worse the result produced by Equation 37. And so, Equation
N

Z3 37 should be viewed as a prescription for stepping toward the
%

‘ minimum rather than direectly to it,

..T:., 2
:q a.(new) = a;(old) «+ 2 (o -1, .8 (38)
Ko J J ijmi

i=1

LN
N In practice, the equation 1is applied iteratively until the

)
gb minimum value of chisquare is reached.

¥
4 |
-‘Q: In order to speed up the program, a further
L)
N
10y approximation is made. The second derivative of chisquare
‘.D

— with respect to the parameters, Equation 35, involves the
{}: second derivative of the fitting function with respect to the
W
B S
%: parameters, Since this term is multiplied by the difference
LG

s between the data value and the value of the fitting function,
¥
N
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it may be neglected if the functional value is close to the

data value. Then, the matrix takes the form:
N
1 of 2f
a, = 2 —_ —— (39)
jk =1 g 2 BaJ. Bak
i
and 1its diagonal elements are positive, This second

approximation makes the result of Equation 38 even worse when
the initial guess is far from the minimum, This makes no
difference so long as Equation 38 steps closer to the minimum
each time it is applied. Since the vector B points toward

lower chisquare, Equation 38 will step downhill if the step

size is small enough and if it is in the direction of B.

To insure that Equation 38 always sters downhill, the

inverse of a modified curvature matrix, a'jk defined as

(l+)\)a £ P
ol = jk for j =k, A>0 (40)

m for j # k

is used in it, Multiplying the diagonal elements of a by a
value greater thanr one has the effect of making the inverse
matrix smaller, This decreases the step size. Since only
the diagonal elements are affected by this factor, a large
value of ) will cause the diagonal elements to dominate when

taking the inverse. Then, the inverse of ' is just the

49




4

o 3

-

N2

Y

o

i}: matrix of the reciprocal of the diagonal elements of a' and
' 'z since its diagoral elements are positive, the diagonal
o

.g& elements of the inverse will be positive, This has the
:\}: effect of making the step in the general direction of B.

o

;;j) Larger values of A are used to decrease the step size
iﬁz and point the step in the direction of the maximum decrease
ar e in chisquare (usually wused far from the minimum), whereas
K é small values of X effectively remove this modification from
gﬁh the equations, allowing accurate matrix calculation of the
:{i next step (usually used near a minimum). The value of A is
{?ﬁ changed dynamically in the program as the fit proceeds. It
;%3 is multiplied by 10 if the previous attempted step was
AL unsuccesful in decreasing chisquare and the Step is
ng reattempted. If the previous step successfully decreased
;Ef chisquare, the value of A is divided by 10 for the next step.
f'g:s'

-f-: The program begins by asking the operator for an initial
%é? value of the parameters. The program computes the gradient
. of chisquare at this point and attempts to step away from
}%f this point to a new point in the direction of reduced
jﬁﬁ chisquare. If the value of chisquare at the new point is the

same or larger than the value at the original point, the

PR X X R X X
: P d 3
oy

[y 4

attempted step was unsuccessful (i.e. uphill) and A is made
larger (to modify the size and direction of the step) and the

S step from this point is tried again. If the value of
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chisquare at the new point is 1lower than the value at the
original point, the attempt step was sSuccessful (i.e.
downhill) and A is made smaller for the calculation of the
next step. The program continues stepping downhill until the

value of chisquare stops changing.

A possible form for the appearance of the parameter
space for a two parameter fitting function is shown in
Figure 13. The oval curves are constant chisquare contours.
Note that the computer steps three times to find the minimum.
Note also that there are two minima in the diagranm. The
presence of multiple minima occurs fairly often, and some
effort must be made to find all of the minima. If more than
one minimum gives a good fit, other information must be

brought to bear in selecting one of them as the "correct"

fit,

The sharpness of the minimum and its uniqueness is a
function of the quality and amount of the data. Reducing the
random error in the data sharpens the minimum thereby
permitting a more precise determination of the variable
parameters. Reducing the systematic error in the data also
improves the fit and allows a8 more accurate determination of
the parameters. Taking more closely spaced data or taking
data over the widest possible range of the independent

variable (temperature in our case) .an increase the precision
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Contours of constants chisquare in a two dimensional parameter space.
Two minima are shown in the diagram and the three arrows trace the

steps taken to find the position of the minimum on the left.

Figure 13,

M al(min)

-

< f . "'r G - W
. Y Y -
\ .v.‘ ‘q‘ .b . t"‘l SANA MY NORK 2 |. LA A .' () » [) |.

!“q'n-.

-

Y% ot *‘r‘.ﬁ-.-. Ny

Cea
- -t
m-m‘x. VW



N T W T T T T g T ORN UTT I T T I TOUEIES T T IR T UT T WA TGTIETT  MATRTTRTIR TN ST E T Y T s e TRV W WY ' ¢ 'Y v W ".PT

of the results even in the presence of systematic error. All
of these strategies have the effect of increasing the amount
of information that may be extracted from the data via the

fitting program.
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SECTION V

["PROVENENTS IN THe IHEORY

For samples not too heavily doped, the true carrier
concentration in the sample may be obtained accurately by
solving the exact charge balance equation, but this 1is not
usually done because of calculational difficulties. Instead
the full equation is generally approximated by Equation 16.
This is an excellent approximation for a doped sample and it
only breaks down at high temperatures where mixed conduction
becomes important. Also, the distribution of carriers in the
bands is approximated using Boltzmann statistics, and
ordinarily this too is a good approximation, In the first
part of this section, the accuracy of these approximations

will be estimated,

Besides the approximations, there are a multitude of
constants in the <charge balance equation which must Dbe
determined. We usually pick the concentrations (NAi and Np)

and ionization erergy (E,;) of the impurities to be the

parameters varied in the fitting process, and so the density

of states in the band (N, for the valence band), the
degeneracy of the bound states of the acceptors (gij)' and
the binding energies of the excited states of the acceptors

(EAiJ) must be put in by hand. In the second part of this

section, these factors and the effect they have on the
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,2 calculated carrier concentration for p-type samples will be

discussed.

K+
8§y
L
A
f: Unfortunately, the Hall effect does not measure the true
\ carrier concentration in the sample, but measures the carrier
\‘
ﬁ concentratior divided by the Hall scattering factor, r. In
N
:% order to find the true concentration of impurities in the
' sample the data must be corrected, The r-factor can be
A
o calculated theoretically which includes some uncertainties,
a

'j it can be estimated by some measurements, and it can be
o measured explicitly in others. In the last part of this
15)
- section, improved estimates of the r-factor will be assessed.
l:

}l

. 1. APPROXINATIONS

; a. Mixed Conduction

f To obtainm the modified <charge balance equation
. (Equation 15) from the completely general form (Equation 14),
4
'ﬁ the concentration of electrons in the conduction band must be
b,
N, neglected. This can be done if the concentration of
x conduction electrons is much less than the concentration of
-

e holes in the valence band, The maximum concentration of
[

o holes is given by

k]
ke
4
3 p = )i:NAi - Np. (41)
K

and the concentration of electrons is approximately

<

‘-

[)

i >

3
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b (References 2 and 7)
oo
RS
vl n o= Ny (-E,/KT)/ (42)
_.‘-:' ¢! vexp - g 1 p ’
2
S L\, 8
L )
. where Eg is energy band gap and N, is the density of states
n,t
J é in the conduction band, so the condition for the neglect of
3“ the conduction electrons is
Wik
!.67
N
¢§? Nchexp(-Eg/kT)/p << p. (43)
.:."
:Ru
At low temperatures this inequality is well satisfied because
(?_;.
ibﬁ Eg >> Epy for any i, but as the temperature is increased
gy
"o
fix conduction electrons become important first for lightly doped
. samples and only for heavily doped samples at the highest
)
gﬁ temperatures (Reference 19). In Figure 14, the Hall data for
Y
o
”d a high purity silicon sample is shown, Hote the upward curve
[N
. of the data at the left side of the graph. Here, the sample
"i"
Jl
\:A is making the transition to mixed conduction where both
; '&:‘.'
o, electrons and holes carry current, This upward curve of the
o
data 1is indicative of ¢the onset of mixed conduction and
b .?."
A
:}: whereas Equations 5 and 15 may be used to obtainm the carrier
>
LY
£
‘§§ concentration at lower temperatures, Equations 1, 2 and 14
s must be used in this high temperature region. In the absence
ey
gg; of this type of evidence for mixed conduction, the modified
;?3 charge balance ejuation describes the data very well.
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Carrier concentration versus 1000/T for a high purity p-type
gsilicon sample. These data show the effect of the transition
to intrinsic conduction at high temperature (left side of the
graph).
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g b. Boltzmann Statistics

To obtain the form given in Equation 17 for the
function & . tne distribution of holes in the valence band
» was assumed to be described by Boltzmann statistics.,
jq Boltzmann statistics assumes a simple exponential

distribution for the electron density and applies to

-
-

Ji electrons only if their density is low enough 8o that they
§} are "nondegenerate" -- that 1is only 1if the Fermi-Dirac
EE distribution function may be approximated oy a simple
;: exponential. This 1is a good approximation so 1long as the
:5 Fermi level, H, is in the ©band gap more than 3,5kT from the
B~ edge of the valence band (Reference 7). In other words, the
L}

Q: Fermi distribution in the integral is expanded in the form

- w

ﬁ; [1+exp((M=-E)/kT)]=" = exp((E~U)/KT) ) [-exp((E-u)/kT)]j (uy)
:.f:f §=0

" and the higher-order terms are neglected. This can be done

Ll

T
o
A .

so long as the absolute value of the sum of the higher-order

terms is much much less than the first term:

™
f: Z [—exp((E-u)/kT)]j <. (u45)
4 The maximum deviation from Boltzmann statistics will occur
5: for holes with energies at the edge of the valence band,
f% E = 0, and the most important term in the sum in Inequality
‘;: 45 is the first one,. For the condition stated by Blakemore,
.4
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b = 3.5kT, these terms represent at most a 3% correction at
the edge of the band. Since the distribution function 1is
integrated over energy, the error in the integral (which is
y; the important number) is only about 1% (References 7 and 20).

This condition is hardest to satisfy for shallow dopants
? which can bring the Fermi level close to the band edge, At
low temperatures, the Fermi level locks onto the ionization
. energy of the shallowest partially compensated acceptor.
3 This is always many many times kT at these temperatures. At
h the highest temperatures, the Fermi level moves toward the
middle of the band gap as the sample begins to experience
mixed conduction and it again is many times kT from the edge
of the band. It is only at intermediate temperatures that
problems can develop when the Fermi level position relative
to the band edge is one half of the ionization energy of the
deepest acceptor. If the deepest acceptor is rather shallow,
the Fermi level <c¢an approach the band edge to within a
distance of kT. fror a silicon sample heavily doped (density
3 on the order of 1018cm‘3) with boron, a shallow acceptor, the
condition U > 3.5kT can break down if the exhaustion region
is not entered by 73K. Actually, this requirement is much
too stringent and the exhaustion region can be delayed to
temperatures as high as room temperature before the error in

the carrier concentration becomes greater than 1%.
Y 2. VALUES OF CONSTANTS
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ﬁ% a. Density of States Effective !lass
}ﬁ The dersity of states in the valence band, NV must
E& be calculated and put into the charge balance equation. The
%
.$§ only factor in it that must be handled with special care 1is
';\ the temperature dependent density of states effective mass.
'éé Recently it has been calculated for the valence band of
,;ﬁ silicon (Reference 21) and a formula has been published
fﬁ' (Reference 22). Since the density of states is proportional
A
X to the temperature dependent density of states effective mass
\
f¢¥ to the three-halves power, that factor is given in Table 3
" and plotted in Figure 15 along with an earlier calculation by
:? Barber (Reference 23). The greatest difference between the
:ﬁ two curves occurs at the highest temperatures, but because
¥ the carrier concentration is not dependent on the density of
5§ states in the exhaustion region, the greatest effect on the
if carrier concentration occurs in the intermediate temperature
04 region, The calculation of R. G. Humphreys (Reference 24)
’;% also shows a larger effective mass than that given by Barber.
.r.
W,
P Using a different. effective mass, then, changes the
:zﬁ shape of the carrier concentration curve. In comparison with
Ej‘ the Barber mass, the new effective mass raises the calculated
;W. carrier concentration slightly at the wupper end of the
:ﬁ intermediate temperature region, this difference being
ﬁJ greatest in samples which enter the exhaustion region at the
N highest temperatures. The effective mass now used for data
$$
'x, ] 60
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0 Figure 15. Density of states effective mass to the three-halves power
versus temperature .
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TABLE 3
‘g
. DENSITY OF STATES EFFECTIVE ‘ASS FACTOR
: 1.5 1.5
ﬁ T (mp/mo) T (mp/mo)
A (K) (K)
j 0 o.444 210 1.072
" 10 0.460 220 1.094
20 0.481 230 1.115
' 30 0.507 240 1.134
é 40 0.538 250 1.153
i 50 0.573 260 1.171
60 0.610 270 1.189
. 70 0.6u47 280 1.206
' 80 0.685 290 1.2¢7
B 90 0.722 300 1.237
v 100 0.758 310 1.251
: 110 0.793 320 1.266
lﬁ 120 0.827 330 1.279
X 130 0.859 340 1.292
140 0.890 350 1.304
. 150 0.920 360 1.317
,2 160 0.948 370 1.328
b 170 0.975 380 1.340
'S 180 1.001 390 1.359
N 190 .026 400 1.361
= 200 .050 410 1.371
;:
32 fitting is well-known and reliable, and no further refinement
. appears to be necessary at this time since it is not limiting
[
o the accuracy of the analysis,
A
it
TN
b. Excited States and Degeneracy
i; The excited states of the impurity contribute to
% the denominator of the formula for the function ®;, Equation
; 17. Their contribution may be assessed by rewriting Equation
4
‘{ 17 in terms of an effective temperature dependent degeneracy
‘N factor, G1(T). in analogy with Equationr 18:
;#
|j 62
d
~

g
ffIJI.‘IJ'IJ' - R P P AT P N I Tdr VR P IE AL IR T T N IPTE V I VO IR TSR SO SR ) Vel 7 D S
‘ o -\ o) \ ;! .'.l.‘.% q."\ _/ - !'...- “_-,_4_}‘ A -'\. .. .\- .v_-'.. . - '.-.-"\(\I\Vf ‘ ’.'}.-,‘:{-‘. ’

ao‘.




9y = Nyexp(-En(/kT)/G;(T). (46)

Then, the effective degeneracy factor may be computed from

Gi(T) H § gijexp((EAij-EAio)/kT). (47)

where the sum is taken over all of the bound states of the
impurity (including the ground state, j = 0) and EAi = Epjo
is the energy of the ground state and EAij is the energy of

the jth excited state.

To apply Equation 47 to the case of the group~III
acceptors in silicon, the g,, and E;jj must be known for all
of the bound states for each acceptor. For the ground state,
j = 0, the degeneracy is taken to be 4 and the binding energy
is taken from the experiment of Fischer and Rome (Reference
25). For j > 0, the excited state energies and degeneracies
are assumed to be the same for all acceptors, and the boron
energy values (Reference 25) are used because the carrier
concentration in boron doped silicon samples is most affected
by the presence of the excited states. Degeneracies were
assigned using the results of Lipari et., al. (Reference 26)

and using relative intensity information (Reference 27).

The effective degeneracy factor is plotted in Figure 16

as a function of temperature for the four acceptors: boron,
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Figure 17, Carrier concentration data versus 1000/T for a silicon sample
heavily doped with boron. The lower curve was obtained by
fitting the data using a temperature dependent effective
degeneracy factor that included 22 odd parity excited states
and 5 even parity excited states. The upper curve was

; .
", !”' } l I '
0 10 20 30

calculated with the same boron concentration (6.25 x 1017/cm3)
as for the lower curve but with a fixed degeneracy factor of 4.
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:$¥ aluminum, gallium, and indium. The grourd state and 22 odd
.3.. parity wexcited states reported by Fischer and Rome were
§iﬁ included in the sum on the right hand side of Equation 47,
:i:’ Note that the effect of the excited states is greatest for
fb" the shallowest acceptor (boron) because they are closest to
%:i the grourd state in boron.
P
b0
sy In Figure 17, two curves are shown on the same graph as
,aq? data taken on a boron doped sample. Both curves are
gg calculated assuming the same impurity concertrations, but the
‘ lower curve includes the effect of 27 excited states (22 odd
«
E% parity and 5 ever parity corrected to the ionization energies
o
}i of Fischer and Rome (References 26 and 28)). lote that the
ﬁ‘; effect of the excited states is to reduce the calculated
:$§4 carrier concentration at the highest temperatures with the
‘
;%: greatest percent effect occurring near the bend that
ﬁy separates the exhaustion region from the intermediate
%(. temperature region. ffecause this bend shifts to higher
g;{ temperatures as the impurity concentration is increased, the
AN

effect of the excited states is most important for heavily

doped samples,

o
- The excited states now known and used give an effective
SRS
.-
{ﬁ degeneracy that 1is completely adequate for all but very
-
N
'j{ heavily doped samples such as the one shown in ftigure 17.
X Inclusion of excited states is essential for the reascnably
)
‘o) 66
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good fit in Figure 17 but the data in this figure need more
excited states if the fit 1is to be improved further.
Additional experimental measurements are therefore required
to reveal the complete excited state structure, such as
higher resoclution optical absorption, photo-thermal
ionization and Ramanr scattering to identify the even parity

states.

3. ESTIMATES 0O- IHE HALL SCATITERING FACTOR

The approximation r = 1 for the Hall scattering factor
(or r-factor) is known to be a poor one because fits using it
give incorrect values for the impurity ionization energy
(Reference 17) and the impurity concentration (References 17
and 18). Since the value of r depends on the dominant
scattering mecharisms in the sample, high purity samples,
whose carrier mobility is dominated by acoustic and optical
phonon scatterirg, will all have the same Hall scattering
factor as a function of temperature whereas highly doped
samples will have r-factors different from high purity
samples and differert from one another because their mobility
is strongly influenced by 1ionized and neutral impurity

scattering as well,

a. High=Purity Hall Scattering factor

The earliest estimate of the high-purity r-factor was

provided by Barry A, Green (Refererce . )) and was based on
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e
o
SN
ﬂh his supposition that the temperature dependence of the
] carrier concenrtration of high- purity samples in the
i{ exhaustion region is caused by the temperature dependence of
B>,
16
L the r-factor. His estimate,
-“
o 0
ﬁ r = 0.83 « 0.04(7/1K) . (48)
\\
g
was designed to have the proper temperature dependence in the
~
W range from S0 to 100 K, and therefore the first constant in
‘.
ﬁ; the formula, 0.83, is only approximate. In Figure 18, this
oy r-factor 1is plotted alonrg with results of calculations by
;j Szmulowicz and iiadarasz (Reference 30) which are shown for
:: comparison, These calculatiors include the scattering
AN
effects of only the acoustic phonons which dominate the
ﬁ mobility in high purity samples up to about 100K,
4
% A recent experimental estimate of the high purity
r-factor has beer provided by !Mitchel and Hemenger (Reference
;- 31) who fit their data on the r-factor in the range 20-50K.
< They give the formula
€9
\" 0.082
e r = 0,35(71/1K) ' (49)
T
-
which 1is plotted 1n tigure 19 over an extended temperature
» |
‘ |
, range. Once agair, the calculated r-factor of SzmulowWwicz and
»
g
" ‘"adarasz is showr for comparison. These estimates show not
only ar increase of the Hall scattering factor in the region
s
’
‘ .
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from 20 to 100K, but taken together, also indicate a possible

upward curvature in the data.

‘ore recent calculations by Szmulowicz (Reference 32)
includes optical phonon scattering in addition to acoustic
phonon scattering. The r-factor calculated by Szmulowicz is
shown in Figure 20 along with the data from Mitchel and
Hemenger. This r-factor increases with T below 80K and also
has the upward curvature from 20 to 80K, is about U4% below
the data of Mitchel and Hemenger, and shows a peak below
100X, The peak in this r-factor at about 80K is inconsistent
with the earlier estimate of Green which showed no peak
within the range of his calculations up to 100K, but it is
consistent with the calculation of MNakagawa and Zukotynski
(Reference 33) which produces a peak near the same
temperature. Szmulowicz's calculation used one adjustable
parameter, the deformation potential, do' which was chosen so
as to give a room temperature Hall mobility of 370 eme/Vsec.
Reduction of this parameter moves the peak to higher
temperatures and raises the room temperature mobility. A
reduction of d  evenr to zero, however, will not move the peak
very far above 100f while it raises the room temperature

mobility to urrealistically large values (Reference 32).

The carrier concentration data of '‘itchel and Hemenger

or sanple 1232-4 was taken over a temperature range from 18

72
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to 100K at a fixed magnetic field strength of 1193 gauss, and
a computer fit of this data can give an indication of the
correctness of the r-factor. Unfortunately, at 1193 gauss,
the sample is in the high field 1limit ( @,T> 1) at low
temperatures and is in the low field limit ( @, T <¢ 1) at

high temperatures, Thus, the r-factor

r o= Ro(0)/Ry(00) (50)

cannot be applied to these data unless they are first
corrected to zero magnetic field strength. Besides the
temperature series, data was taken over a range of field
strengths on samples 1202-H and 4802-3H at fixed temperatures
from 20K to 50K giving an estimate of the correction to be

applied to the 1193 gauss data,

After the estimated correction was applied to the 1202-H
temperature series from 18 to 100K, two r-factors were used
to fit the data and the results are shown in Table 4, The

Szmulowicz r-factor was parametrized using the formula

r = 0.71739 + 0.28429f(x)exp(=~1.221025x), (51)
where

f(x) (1 + 0.43366x + 1,3219x2)/(1 = 0.97429x + 0.46293x°)

13
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N TABLE 4
RESULTS FRO* FITS TO DATA FROM SA!PLE 1202-H
[}
¥
L]
‘; 27 Data Points 25 Data Points
¥ 18 to 100K 18 to 90X
)
N R-Factor Eq Reduced Eg Reduced
:? (eV) Chisquare (eV) Chisquare
®
A ¥
h Szmulowicz 0.04492 0.71 0.04491 0.61
r = 1 0.04480 0.64 o.04471 0.61
.!
N,
K)
‘ )
o and
L x = {/80.526634K,
»
i"
; | -
It gives very slightly poorer results thar r = 1 mainly
’ because of its peak near 80X, If the highest temperature
i data point at 100X is eliminated, it gives a reduced
¢
¥ chisquare as good as that produced by r = 1, Fits using the
9 Szmulowicz r-factor might be improved if the peak could be !
o I
$ moved to higher temperatures. On the other hand, the data
i
“ may contain errors due to the experimental limitation of
7 magnetic field strength that only permitted a full field ;
series to be taken up to 60K, which is the region dominated |
‘8 by acoustic phonon scattering, and this result was
{
I extrapolated to "correct” the data up to 100K. '
3
-
) Our wunderstanding of scattering and the temperature

-
-

dependence of the r-factor has improved dramatically over the
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last few years. The present situation still leaves some
qQuestions that are hard to answer due to having data over
orly a limited range and possibly some issues remaining in
the theory, such as the exact value for the optical
deformation potential. We do have, however, a temperature
dependenrt r-factor that agrees with the directly measured
values over the range 20-50K and correctly removes the
structure in the carrier concentration curve in the

exhaustion region, This represents significant progress.

b. Doped Sample Hall Scattering Factors

In doped sanples, the r-factor situation is not nearly
as simple as it is ip high purity samples. Unfortunately,
the calculation of Nakagawa and Zukotynski (Reference 33) has
not helped much because the results are npot directly
comparable to experiment. Their graphs are plotted for the
case of a fixed (temperature independent) number of ionized

impurities in the sample. Actually, there s a great

variation in the nrunber of ionized impurities im the sample
as the temperature changes, and that variation {s strongly

affected by the nature and strength of doping as well as the

compensation. hs a result, each sample has a unique

r-factor,

Early estimates of the r-factor for doped samples

concentrated on indium doped silicon where the nreed was
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greatest., In these samples, the exhaustion region is not

reached at the highest temperatures regularly measured

. (300=-430K) ., The concentration of indium found in the Hall
aralysis fits for a sample was an inferred quantity which
could not be checked directly using the carrier concentrationr
10 the exhaustion regic:. R. Baron et al., (Reference 34)

extended their measurements to much higher temperatures to

see the exhaustionr region and found that the concentration of
indium inferred from the lower temperature data did not agree
at all well with the value obtained directly from the
g exhaustion region, turthermore, they used C-V measurements
as a check on the indium concentratior revealed 1in the
-, exhaustion regior and also found disagreement. They
corcluded that the r-factor had a value of about 0.7 at room

temperature and that it must rise as the temperature is

lowered. The slope of the r-factor may be estimated from the
incorrect value of the ionization energy for indium

determined from 'fall amalysis.

LI I N

.arry Green (Reference 35) used the results of Baror et
al., as well as h1s own calculations of the r-factor for
ionized 1impurity, neutral impurity and phoron scattering to
present an estimate of the r-factor for indium doped samples.

' de improved and parameterized this estimate to produce the

"empirical r-factor™®
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r o= 0.54 + 1.22(T/50K)/(1 +« (T/50K)2), (52)

This empirical r-factor is plotted in Figure 21 along with
the Szmulowicz high purity r-factor for comparison. Note
that Equation 52 peaks at a lower temperature (50K) and has a
more gentle high temperature slope than the high purity
r-factor as a result of the rapid increase in the number of
ionized impurity centers as the temperature is raised. This
is consistent with the graphs of Nakagawa and Zukotynski

(Reference 36),

A check on the empirical r-factor can be made by taking
data on indium-doped silicon samples over a wider temperature
range and seeing if the reduced indium concentration |is
consistent with the value of the carrier concentration in the
exhaustion region, Indeed, high temperature data show a
lower carrier con.entration thanm that expected from a naive
extrapolation of the low temperature r = 1 data (References 9
and 34), and the empirical r-factor produces fits to the low
temperature data that are consistent with the high

temperature data (Reference 9).

Two other r-factors have also been developed

independently. The r-factor of Wucherer (Reference 37)

r = 0.6%" + 0.489(1 - (T/300:)) (

N
.
~
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was developed for zallium and indium doped samples, It lies
below the empirical r-factor above 40¢ and has approximately
the same slope between 120 and 200K. The r-factor of Holeman
and Humphreys (Reference 38) is also a linear function of
temperature. It is much lower than the empirical r-factor
and 1its lower slope matches the slope of the empirical

r-factor near room temperature.

Improved r-factors for doped samples must await a full
calculation involving all scattering mechanisms because the
high purity r-factor is only a rough guide to the value of
the r-factor for doped samples, The conduction of both doped
and high purity samples is dominated at high temperatures by
optical phonon scattering and it is in that temperature range
only where they could be expected to be similar. In
Figure 20, note that the two curves are, in fact, very close
to one another between 170 and 400K, but that they differ in

value and shape below this range.

Recent calculations (Reference 39) indicate that the
effects of ionized impurity scattering extend to much higher
tenperatures than expected and that, inr samples with low
compensation, neutral impurity scattering has considerably

more effect at low temperatures than previously supposed,.
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